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We use a calaulation of periodic homogeneous isotropic turbulence to simulate the 
experimental decay of grid turbulence. The calculation is found to match the experi- 
ment ip a number of important aspects and the computed flow field is then treated 
as a realization of a physical turbulent flow. From this flow, we compute the large 
eddy field and the various averages of the subgrid-scale turbulence that occur in the 
large eddy simulation equations. These quantities are compared with the predictions 
of the models that are usually applied in large eddy simulation. The results show that 
the terms which involve the large-scale field are accurately modelled but the subgrid- 
scale Reynolds stresses are only moderately well modelled. It is also possible to use 
the method to predict the constants of the models without reference to experiment. 
Attempts to find improved models have not met with success. 

1. Introduction 
It is not possible to calculate most turbulent flows in complete detail because the 

range of length scales is so large that the amount of data that would have to be handled 
is orders of magnitude greater than the capacity of any existing or projected computer. 
For this reason, the traditional approaches to  computing turbulent flows have been 
based on 0. Reynolds’ idea of averaging the Navier-Stokes equations over an en- 
semble of flows or over an appropriate interval of time or space. One then has equa- 
tions for an averaged velocity field U(x, t ) ,  where the overbar denotes averaging 
according to  the definition employed. If we then define a fluctuating velocity com- 
ponent by u(x,  t )  = U(x, t )  + u’(x, t ) ,  the averaged equations can be written (for an 
incompressible flow with constant viscosity) 

aui/axi = 0, (2) 

R..  a )  = U!U’ i (3) 
~ 

since Zi = ui and ui = 0 as a consequence of the definition of averaging. To close this 
system of equations, i t  is necessary to  find an expression for Rij (the Reynolds stress) 
in terms of Ui. 
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In large eddy simulation, one averages the Navier-Stokes equations over a small 
spatial region in order to remove the small-scale fluctuations. The resulting equation 
for the large-scale field contains a term similar to, but more complicated than, the 
Reynolds stress Rij of (1) and (3) and this term (the subgrid-scale Reynolds stress) 
must be modelled. These operations are discussed in 3 3. 

Several models for the subgrid scale Rij have been proposed. The problem has been 
to verify a proposed model. The best that could be done until now was to compare 
the evolution of the computed large-scale structures with those in an experiment (see, 
for example, Deardorff 1970; Mansour et al. 1977). This will not reveal whether the 
actual subgrid-scale Reynolds stress is being accurately modelled, but only whether 
the subgrid-scale Reynolds stress and the model have the same net effect on the 
statistics of the large-scale motions for the particular flow in question. In addition, 
virtually all models contain a t  least one adjustable constant which must be set by 
some theoretical argument or selected to fit some important aspect of an experiment. 
On the other hand, if there were an experiment which measured everything from the 
largest turbulent structure to the smallest eddy, it would then be possible to compute 
the subgrid-scale Ri, exactly, and compare its value at  each point in space with the 
prediction of a model. Unfortunately, no laboratory experiment is capable of such 
measurements. 

In place of a laboratory experiment, we have numerically calculated a three- 
dimensional turbulent flow field on a fine grid (64 grid points on a side) by directly 
integrating the Navier-Stokes equations without having to average the equations. 
We have used the result to examine subgrid-scale models on a coarse mesh overlayed 
on the original fine mesh. Practical limitations require that this be done a t  a relatively 
low Reynolds number, since at  high Reynolds numbers the difference in scale be- 
tween the largest and smallest eddies renders computer simulation impractical. 
Despite this, we shall see that the computed case is relevant to important flows. 

In  $2  we describe how the calculation of the turbulent flow field was done and cite 
some results which indicate that we do have an accurate representation of a truly 
turbulent flow. In 3 3 we give the results of comparisons between models for the sub- 
grid-scale quantities and the ‘exact’ values obtained from our ‘experimental’ flow 
field. 

2. Simulation of isotropic turbulence 
Because this is a first attempt at model verification, we chose the simplest possible 

flow field; homogeneous isotropic turbulence. Experimentally, this flow is approxi- 
mated by grid turbulence produced by passing a uniform stream of fluid through a 
mesh. The decay is observed as the fluid proceeds downstream. Special care is neces- 
sary to assure isotropy; the most recent and careful such experiment is that of Comte- 
Bellot & Corrsin (1971), which we shall use as the base experiment. 

To simulate grid turbulence we shall use the Navier-Stokes equations together 
with the continuity equation for an incompressible fluid: 

aui a aP 
(U,Ui) - - + vv2ui, 

at ax, axi 
_ -  - -- (4) 
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where we use the summation convention. We shall attempt to simulate the grid- 
turbulence experiment computationally by selecting a cube of fluid and following its 
history as it passes downstream from the grid. I n  order to  do this successfully, we 
must assure that the cube we select is large enough that all correlations are essentially 
zero a t  distances equal to the side of the box. From a practical point of view, this 
means that the box must be large compared with the integral scale of the turbulence; 
the box should also be small enough that, under the conditions of the experiment, no 
significant changes in important integral properties occur over a distance equal to the 
size of the computational cube. If these conditions are met (and they are in the case 
under consideration), we may simulate the experiment by following the time history of 
the cube of fluid using periodic boundary conditions in all three spatial dimensions. 

Equation (5) can be replaced by an equation for the pressure p .  We apply the di- 
vergence operator to  (4) and we are then left with a Poisson equation for the pressure: 

In  general terms, the method of solution is to start with the velocity field a t  time 
nst, solve (6) for the pressure field a t  time nSt, then use (4) to  find aui/at a t  n8t and 
advance the solution to  time (a+ 1)St .  Thus we ensure continuity at time (n+ 1 ) S t  
by properly choosing the pressure a t  time nSt. This is a fairly standard numerical 
algorithm. 

All special derivatives were calculated using fourth-order, space-centred, finite- 
difference approximations; the differencing of the convective term is both momentum 
and energy conserving, cf. Kwak, Reynolds & Ferziger (1975). Periodic boundary 
conditions were imposed and the three-dimensional Poisson equation for pressure 
was solved with the aid of fast Fourier transforms. The time-differencing scheme is 
a third-order-accurate predictor-corrector method. The predictor step is of leap-frog 
type, 

and the corrector step is 
(u*)n+l = un-l+ 2St(U*)P, (7) 

(8) 

which will be recognized as an implicit Adams-Moulton method. 
The main advantage of this third-order scheme is that, only one time derivative, 

namely (u*);+l, must be calculated a t  each time step. Since the computation of ut 
requires the evaluation of the right-hand side of (4), virtually all of the computational 
effort is involved in calculating the time derivative of the velocity field (in which we 
include solving the associated Poisson equation for pressure), this method is only 
slightly slower than an explicit first-order scheme or the second-order leap-frog 
scheme. The third-order accuracy is obtained by saving the time derivatives of the 
veiocity fields a t  times n and n - 1 .  The stability criterion is similar to the standard 
Courant condition. Details of the method (which has not previously been used in 
this application) can be found in Clark, Ferziger & Reynolds (1977). An indication of 
this accuracy is given by figure 1, the results of a numerical test on the one-dimensional 
wave equation: 

u, was calculated by the use of Fourier transforms so that the only error in the nu- 
merical solution is due to  the time-differencing scheme. u was defined a t  64 evenly 

u" + &%(U*)y + &dt(u*)2"+' - ;&(u+)y-', un+l = 

(9) ut+cu, = 0. 

1-2 
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FIGURE 1. Solutions to ut+cu, = 0. . - . - a  , second order; - , third order; @, exact. 

Dissipation Kolmogorov Taylor 
(u:)t rate microscale microsct~le R A 

U, TI111 (cm/s) (cm2/s3) (em) (em) ( U 3 t  hlv 

240 6.75 145 0.069 0.845 38.1 
385 5.03 48.5 0.091 1.09 36.6 

TABLE 1. Gross properties of the turbulent flow. U,, = 10 m/s, M = 2.54 cm. 

spaced points and was initially zero, except for the triangle shown hear the centre. 
Periodic boundary conditions were applied, and we set cSt/Sx = 0.2. In  the exact 
solution, the triangle moves from left to right a t  the constant speed c, so that after 
1600 time-steps the triangle should have swept across the grid five times and the 
exact solution is identical to the initial conditions. The third-order calculation used 
3 %  more computing time than the leapfrog calculation and twice the amount of 
storage. It is clear that the third-order method is superior. 

Comte-Bellot & Corrsin (197 1) measured the downstream decay of grid-generated 
isotropic turbulence in a wind tunnel with free-stream velocity U,. A time history 
was obtained by assuming that two points separated by a distance L in the flow 
direction are equivalent to the two times separated by t = L/U, in a flow with no 
mean velocity. 

The conditions chosen for the simulation are given in table 1. U,, the mean flow 
velocity, is 10 m/s, and M ,  the size of the mesh, is 2.54 cm. The initial conditions 
were set up to coincide with the experimental data a t  U,t/M = 240. The initial con- 
ditions were given the same total energy and energy spectrum as the data and had 
zero divergence but were otherwise random. 

The initial field does not represent true turbulence since it does not contain the 
local velocity correlations that exist in a physical field. It is these correlations which 
give rise to the subgrid-scale Reynolds stresses which we hope to model. We also note 
that the skewness, which is an indication of the presence of turbulence, is initially zero. 
The expectation is that, as the equations of motion are integrated in time, a represen- 
tation of a true turbulent flow will develop. 

Given the fixed number of mesh points in each direction, N ,  the physical size of the 
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FIGURE 2. Velocity correlation function. 

box of fluid, L, must be determined. The box must be large enough that the velocity 
correlation a t  4L is negligible, and small enough that the highest wavenumber 
kmZx = N z / L  is large enough to  include essentially all of the energy dissipation 
spectrum. The size of the box was chosen to be a cube of side 20 cm. Figure 2 gives 
the experimental velocity correlation function R,,(r,, 0, O ) ,  where 

and 

We see that a 20 cm length is sufficient to meet the condition that the correlation a t  
&L be small. This choice also makes the mesh size small enough that most of the dissi- 
pation is contained in the resolvable scales. The time step was chosen to be 0,0073 s, 
which means that 50 time steps are required to  go from U, t /M = 240, the initial 
state, to U,t/M = 385, the next experimental station. 

In  figure 3 we show the three-dimensional energy spectrum E(k) ,  the dissipation 
spectrum D(k)  and the energy transfer spectrum T ( k )  of the final numerical flow 
field. D(k)  is simply vk2E(k); T ( k )  is calculated from 

(11) 

Pll(T1, 090) = <u1@1+ Yl, x2, x3) Ul(X1, x2, xs)). 

aE(k)/at = Tfk) + D(k);  

aE(k)/at was calculated using the numerical values of ui and a(u:)/at. The energy 
spectrum compares well with the experimental one. Comte-Bellot & Corrsin (1971), 
whose data we are attempting to match, did not compute T ( k ) .  Van Atta & Chen 
(1969) have given T ( k )  for a similar experiment. However, their spectrum is somewhat 
different from that of Comte-Bellot & Corrsin and we must expect that  the transfer 
function T ( k )  would also be different. We compared our results with Van Atta & 
Chen’s and found that our results are somewh.at shifted upward in wavenumber 
(which is consistent with the spectral differences) and the peak a t  low wavenumber 
is not as sharp. This is probably because we had to  use fairly wide bandwidths to 
obtain good statistics. 

We now examine some of the results. First, we consider the energy and its rate of 
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FIGURE 3. Energy transfer and dissipation. Note that T ( k )  is plotted with the opposite sign. 

change, the dissipation rate. The only source of dissipation is the physical viscosity 
v = 0.14 cm2 s-l. If the simulation is accurate, its energy decay will match the ex- 
perimental data; figure 4 demonstrates that this is the case. The mean energy in the 
numerical simulation a t  time-step 50 is only 3.2 yo lower than the experimental value. 
The dissipation rate, which is it more sensitive indicator, is 11.3% higher than the 
experimental value. This is apparently the result of too high a numerical transfer of 
energy from low to high wavenumbers; unfortunately, since Comte-Bellot & Corrsin 
did not measure T ( k ) ,  we cannot verify this directly. 

The skewness of low Reynolds number wind-tunnel turbulence has been shown 
experimentally to be approximately 0.4 (Batchelor 1953). The skewness 8 is defined 

where { ) indicates an ensemble average, The skewness of the numerical flow field, 
with the average taken over all grid points, is shown in figure 5. The skewness starts 
a t  zero, but after only 15 time steps it has stabilized a t  approximately the experi- 
mental value. The slight dip in the skewness which occurs at intervals of eight time 
steps is due to corrections which were made to eliminate an apparent weak instability 
in the time integration scheme. This is described further in Clark et al. (1977). 

As the results seem to be in adequate agreement with the experimental data, we 
believe that the computed flow field may be accepted as a realization of an isotropic 
turbulent flow field and it will be used as such in the following section. Similar results 
could have been obtained by means of the Fourier methods employed by Orszag & 
Patterson (1972) and Rogallo (1977); the major difference between our calculation 
and theirs (other than the numerical method) is the initial conditions. We chose finite- 
difference methods mainly because they appear to be more easily extended to the 
inhomogeneous flows that we intend to study next. 
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FIGURE 4. Dissipation rate and energy. 0, experiment ; 0 ,  calculated. T = 0.0073 N s. 
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FIGURE 5. Skewness as B function of time. 

3. Testing of models 
We now have a realization of an isotropic turbulent flow. The velocities and pressure 

are available at (64)3 grid points a t  50 times. This contrasts with experimental data 
that contain many time points but relatively little spatial resolution. The computed 
flow can then be used as input for the analysis of various models of the subgrid-scale 
turbulence. 

Consider again (1) and (2). Leonard (1973) has suggested that the appropriate 
averaging process for large eddy simulation should be a local spatial average: 

'iii(x) = J G(x - x') u ~ ( x ' )  dx', (13) 
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where G is a normalized weighting function as yet unspecified. This process may be 
called filtering, as its effect is to remove the small-scale fluctuations from ui in forming 
ui the filtered or large-scale field and ui (defined below) the subgrid-scale field. 

A simple choice is to let G = 1 within a cubic volume with sides of length Aa cen- 
tred a t  x and let G = 0 outside. Then 

- 

the integrations being from xl-+Aa to xl+&A,, x2-&Aa to  x2+iAa and from 

We now obtain the filtered counterparts of (1) and (2) by multiplying each by the 
~3 - *Aa to ~3 + +Aa. 

weighting function G = 1 and integrating over the cubic volume V to obtain 

aui a __ 83 
-+-U.U. = --+vv2u,, 
at ax, a 3 axi 

aiiipxi = 0. (16) 

We now make the substitution ui = Gi + u; in the nonlinear advective term and obtain 

where 

is the subgrid-scale counterpart of the Reynolds stress. 
We stress the fact that (17) is exact. We have defined new variables, but SO far we 

have made no approximations. Also Ui and ui are continuous variables defined a t  all 
points in space and time, and are in no way tied to a finite grid of points. 

I n  order to solve (17) it is now necessary to make some approximations. The testing 
of these approximations is the purpose of our main numerical simulation. Commonly 
used approximations are (cf. Deardorff 1970) 

~ 

rij  + u;u; = f (Gi ,  T i j ) .  (21) 

The major purpose of this paper is to investigate these approximations, test their 
validity, and suggest improvements. Alternatively, one can include Gz. - i i iGj  and 
the left-hand side of (20) in the definition of r i j  and regard the model as one for the 
combination so obtained. We have not tested this possibility. 

Leonard (1973) has shown that (19) is probably a poor approximation in turbulent 
flow and has derived a model for the associated error. Clark et al. (1977) have shown 
that (20) is a poor approximation and have derived a model for the error. 

We now imagine placing a coarse 8 x 8 x 8 mesh over the physical space occupied 
by the fine mesh used in computing the flow field. Thus each side of the coarse mesh 
is eight times a side of the original fine mesh. This mesh can be thought of as the one 
we might use in a large eddy simulation of this flow. The relation between the meshes 
is illustrated in figure 6. Within each cell of the coarse mesh, we have the velocity 
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field Ui at 512 evenly spaced points. Now we need to  compute the filtered velocity 
field ;ili a t  each point in the fine mesh. We actually used the box filter (14) with sides 
of length A, = S7-A) where A is the mesh spacing of the coarse grid, rather than 2A, 
so that the fine mesh points are evenly distributed on both sides of the point a t  which 
we want the average. The filtered velocity i i l ( i ) j ,  k ) ,  where i,j, k are the co-ordinates 
of the point on the fine grid, is 

1 i i S  j + S  k i 8  
i i l ( i , j , k )  = - -9 z U1(i’)j’)k’). (22) 1 73 $=?- 8 j , = j -  8 k’= k -  8 

Calculations will also be made using an averaging volume with side #A. Having cal- 
culated U,, we also have u; from its definition ul-iil = 11,;. For illustration purposes 
we have randomly chosen a line of 64 points in the x1 direction and have plotted 
ul(xl) and Ul(xi) for these 64 points in figure 7. 

The remaining quantities in which we are interested are computed from 

_ _ _ _  
We now restrict our attention to the quantities iii, U i i i j ,  ;iliiii and u x  a t  the centres 
of the 512 cells defined by the coarse mesh. The claim made for the models under 
investigation is that  the variables i i iUi ,  iiiu; and .;.I can be expressed as functionals 
of Ui. We shall now demonstrate the extent to  which this is true for the particular 
flow field we have simulated. 

~ _- 
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FIGURE 7.  Sample of filtered and unfiltered velocity fields. 

We can compare the models for subgrid-scale turbulence terms with their numerical 
experimental values. We define the conventional correlation coefficient C ( M ,  X )  
between the prediction of the model M and the exact experimental value X by 

where 

If M and Y are totally unrelated, then C ( M , X )  = 0. If M is a constant multiple of 
X, i.e. if the model is exact, C(J1, X) = 1. 

There are three levels a t  which comparisons can be made. For the moment we 
restrict the discussion to the subgrid-scale Reynolds stress rij. The most direct 
comparison is a t  the tensor level, i.e. between the experimental and modelled com- 
ponents r i j .  On the other hand, the term which actually occurs in the momentum 
equation is an acceleration vector arii/axj. We define the vector level of comparison 
to be that between the experimental and modelled values of arii/axj. The scalar level 
of comparison refers to the energy dissipation Uiarij/ax, in each cell of the coarse 
mesh by the experimental and modelled rij. As the primary purpose of the subgrid- 
scale model is to  remove kinetic energy a t  the correct locations in the flow, the scalar 
level of comparison is quite significant. 

Tensor-level comparisons 

The Leonard term. The Leonard term is defined as 
__ 

L. .  z3 = A. . -+Akk8i j ,  a? Aij = EiGj-EiEj, 

and the model we use for Lij (Leonard 1973) is 

Mij  = C C ~ ~ - Q L X ~ ~ & ~ ~ ,  aij  = &A:V2(UiEj), 
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where Au is the size of the averaging box ($A or ?A). Fourth-order differencing has 
been used in evaluating all of the models. Fourth-order space differencing was found 
to give 1-3 % better correlations than second-order differencing. The differencing was 
done on the coarse mesh, because this is the mesh which would be used in a modelled 
simulation. Since we have Tii on the fine mesh as well as on the coarse mesh, we can 
get more accurate approximations to the derivatives. We compared the results ob- 
tained by differencing on the fine mesh with those obtained on the coarse mesh and 
found the differences to be small (the correlations for the Leonard, cross and Reynolds 
terms in the case of the :A filter changed from 0.909, 0.790 and 0.277 to 0.934, 0.744 
and 0.297, respectively). 

The correlation between the model (31) and the experiment (30) is 0.935 for the 
large (?A) filter and 0.909 for the small ($A) filter. The ratio of the r.m.s. value from 
the model to the r.m.s. value from the experiment is 1.60 for the large filter and 0.788 
for the small filter; this ratio represents the proportionality constant of the model and 
the reason why these values differ from each other and from the expected value of 
unity (Leonard 1973) are not understood. Since the model for the Leonard term is 
based on the fewest approximations among the three terms we are considering, we 
expect it to be the best, which it is. Also, since the model is based on a Taylor series 
expansion of the filtered velocity field, we expect the smoother velocity field produced 
by the larger filter to give better results, and it does. 

The cross-term. The cross-term is defined as 
_ _ _ _  

cij = K i j - g K k k S i j ,  K i j  = z i u ; + u ; z j ,  (31a) 

M . . = a .  23 %.j --'a 5 k k  8 ij, tL i j  = -&Ai(GiV2Ej+GjV2iSii). (31b) 

and the model used for Cij is 

For its derivation, see Clark et al. (1977). In  this case, the correlation is better for the 
small filter than for the large filter. This is probably because the experimental values 
are smaller for the large filter than for the small filter, owing to the smoother flow 
field. The correlations of 0.685 and 0.790 are less than for the Leonard term, but the 
r.m.s. ratios of model to experiment are both closer to each other and to unity; they 
are 1.23 and 0.96 for the large and small filters, respectively. 

The subgrid-scale Reynolds stress. The definition of the subgrid-scale Reynolds 
stress is - 

7i.j = f l i j - + f l k k 6 i j ,  flij = uiu!j. (32) 

The four models we shall consider are all of the eddy-viscosity type, i.e. 

for model 1 (Smagorinsky 1963), (34) 

K = (CAJ2 (WiWi)* for model 2 (vorticity), (35) 

K = ;(CA,) (u;)* for model 3 (turbulent kinetic energy), (36) 

K = C for model 4 (constant eddy viscosity). (37) 
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I n  (35), wi represents the vorticity wi = f+k(auk/axj). I n  model 3, the value for a 
is taken from the experimental data. The values obtained are given in table 2 .  All 
four models were found to be approximately equally valid with t,he best correlations 
found to be 0.363 for the large filter and 0.303 for the small filter. Although these 
correlations are considerably below those for the cross and Leonard terms, they are 
clearly significant. The constants in the models were obtained by matching the r.m.s. 
value of the exact quantity with that of the model prediction. 

Vector-level comparison 

The Leonard and cross terms. I n  the previous section, we compared the models 
directly with the corresponding stress tensors. Here we make the comparison with 
the terms which actually enter the momentum equations, i.e. aLiilaxi and aCij/axj. 
The results for the large filter show that the correlations range from 0.935 to  0.947 for 
the Leonard term and from 0.685 to 0.689 for the cross term for the three components. 
For all practical purposes these are the same as for the tensor-level comparison. 

The subgrid-scale Reynolds stress. I n  contrast to the case for the Leonard and cross 
terms, we find a significant increase in the correlations between the model prediction 
of arij/iixj and its experimental value over the correlation at  the tensor level. The 
results shown in table 2 show that all models are again equally good, but the corre- 
lation has typically increased from 0.35 to 0.42 for the large filter. Comparable in- 
creases are seen in the results for the small filter. The reason for this increase is not 
understood. We note also that, with one exception, the model constants decrease. 

Scalar-level comparison 

The Leonard and cross terms. Here we base our comparisons on the terms which 
enter the energy equation, i.e. UiaLij/iixj and GiaCij/axi. We find a small decrease 
in the correlations in going from the vector to  the scalar level for both Leonard and 
cross terms. There is a large relative disagreement between the values of the dissi- 
pation due to  the Leonard term a t  the two filter widths. This is not serious, since the 
dissipation due to the Leonard term is itself relatively small. 

The subgrid-scale Reynolds stress. We find a very sharp increase in the correlations 
for the subgrid-scale Reynolds stress a t  the scalar level. For example, at the vector 
level, the Smagorinsky model with A, = ?A had a correlation of 0.425, but at the 
scalar level it is 0.710. Part of the increase may be due to the fact that both the ex- 
perimental and the modelled terms have mean values which are significantly positive. 
Even so, when the mean values of both are subtracted out, the correlation between 
the fluctuating components of the exact and model values is still 0.535. We also note 
a further decrease in the model constant. 

The subgrid-scale eddy coeficient 

The models contain constants, which are usually called the subgrid-scale eddy coeffi- 
cient. The value of the constant has no effect on the correlation between model and 
experiment. As mentioned above, we can adjust the constant to match the r.m.s. 
values of the model and experiment. The values of the constants found in this way 
are given in table 2 and were mentioned earlier. The constants obtained decrease as 
we pass from the tensor level of comparison to the scalar level. Since the primary 
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Term 

T i j  

(tensor) 

aTii 

8% 
- 

(vector) 

a T i j  

8% 
ui - 

(scalar) 

Correlation Model constant 
&& 

Smagorinsky 0.366 0.277 0.270 0.247 
Vorticity 0.344 0.260 0.294 0.275 
Turbulent kinetic energy 0.363 0.303 0.196 0.175 
Eddy viscosity 0.352 0.295 

Smagorinsky 0.425 0.346 0.240 0.264 
Vorticity 0.408 0.327 0.220 0.247 
Turbulent kinetic energy 0.434 0.362 0.138 0.155 
Eddy viscosity 0.426 0.356 

Smagorinsky 0.710 0.580 0,186 0.171 
Vorticity 0.700 0.582 0.202 0.191 
Turbulent kinetic energy 0.723 0.606 0.085 0.095 
Eddy viscosity 0.716 0.605 

Model L8TA QA YA #A 

TABLE 2. Summary of correlations between exact subgrid-scale 
Reynolds stresses and models. 

function of these models is to represent the transfer of energy from large to  small 
scales, which acts like a dissipation to the large scales, we recommend that the values 
given for the scalar level of comparison be used. For the Smagorinsky model, these 
values are in excellent agreement with theoretical and experimental values, which 
range from around 0.13 to 0.21 (Deardorff 1971; Mansour et al. 1977). We note that 
when the Smagorinsky model is written using the term (CA# the value of C is nearly 
independent of Aa; this would not be the case if the finite-difference grid spacing A 
were used. It is encouraging that we have obtained about the same value for C as is 
obtained by theoretical arguments assuming an inertial subrange and by numerical 
experiments a t  higher Reynolds numbers. This leads us to speculate that C is nearly 
independent of the spectrum of turbulence and Reynolds number, a t  least in the iso- 
tropic case for Reynolds numbers above the ones used here. (Note that the proper 
Reynolds number in this connexion is the subgrid-scale Reynolds number u’A/v, not 
the quantity Re, introduced earlier. These numbers are of the same order of magnitude, 
however.) The values we obtain are within 10 yo of those found by Kwak et al. (1975), 
Shaanan, Ferziger & Reynolds (1975) and Mansour et al. (1977) by matching model 
calculations to experimental energy decay. Since a change in numerical method can 
result in a 10% change in the constant, we can say that we have indeed predicted 
the model constant without reference to experiment. 

Comments on the correlations 

A striking result is that all four of the models are essentially equally valid. Since all 
of the models use a positive scalar times &,/ax, + a;iij/Bxi, we checked to  see how often 
the sign of r t j  coincided with the sign of a;ii,/ax,+a;li,/ax, and found it  to be only 
68 yo. We also ran a calculation with K adjusted a t  each point in space so as to give 
the best possible correlation. At the tensor level of comparison, we achieved a corre- 
lation of 0.51 us. 0.35 for the models considered above. We conclude that no model of 
the form (33) can do very much better than Smagorinsky’s. This includes models 



14 R. A .  Clark, J .  H .  Ferziger and W .  C.  Reynolds 

which attempt to calculate the transport of turbulent kinetic energy and models 
which attempt to calculate both the turbulent kinetic energy and a length scale or 
the dissipation (so called two-equation models). This is partially verified by the 
results of model (36), which show that, even if one could calculate exactly the tur- 
bulent kinetic energy in each cell, this would not give a significant improvement. 
Also, note that the constant in the eddy-viscosity model (37) is dimensional, so that 
this model is not really a serious contender as the constant would need t o  be adjusted 
for each flow; it was included merely to show how a simple model might perform. 
Some possible exceptions will be noted in 5 4 below. 

Other models, which were discarded 

The models considered above are reasonably good. We list here some of the more 
reasonable-looking models which were tried but discarded. The following three-tensor 
eddy viscosity models all had correlations of less than 0.02 with the numerical 
experiment : 

?ij = CbBDikDkj, 
7.. t j  = - iCA;(RikDkj  f Rjk D k i j ,  

?ij = @A;(DikDkjfRjkRkj), 

where Dij is the strain-rate tensor 

L+, = &(a;ti,/ax, + a i q a X i ) ,  

R ~ ,  = ga-ii/ax, - azj/axi). 

and Ri, is the rotation tensor 

The next three models are similar to the Leonard term, and all had correlations with 
?ij of less than 0.02: 

We are continuing to investigate still other models and the results will be reported in 
the future. 

4. Discussion and conclusion 
We have shown that it is possible to simulate homogeneous isotropic turbulence 

a t  low Reynolds numbers. Present computational capacity restricts the range of 
Reynolds number based on the Taylor microscale to less than about 40. New compu- 
ters (such as the Cray I) will allow an increase in the Reynolds number of a factor of 
two or, perhaps, four. The scaling is such that the use of exact simulation will be 
restricted to relatively simple flows for some time to come. We therefore expect that 



Evaluation of subgrid-scale models 15 

the major application of exact simulations of turbulent flows will b e  in the testing 
of models along the lines of this paper and in the testing of theories as others have 

It must be emphasized again that the results obtained in this paper apply only to 
the particular flow treated here and caution is necessary in drawing any sweeping 
conclusions. It is likely that some of the results apply to  a wider range of flows than 
the one treated here and some speculations will be made below. These must, however, 
be considered for what they are. 

The modelling suggested by Leonard for the term UiZi -UiUj has been found to be 
of acceptable accuracy but the fact that  the constant appears to  depend on the 
averaging width is an unexpected result, and no explanation for i t  has yet been found. 
This is a subject that requires further investigation. An alternative is to  compute the 
t e r m s j  directly (Mansour et al. 1977). We expect the importance of this term to be 
nearly Reynolds number independent. 

The modelling of the cross term u;Uj + UiU; is also quite good. The importance of 
this term should decrease with increasing Reynolds number. This term can also be 
combined with the Leonard term to give a simpler combined model that ought to be 
both simple to compute and quite accurate. 

The modelling of the subgrid-scale Reynolds stress is not so good as to eliminate 
the need for improvements, but neither is it so bad as to cause one to reject i t  out of 
hand; we were unable t o  find any model more accurate than Smagorinsky’s. It is 
encouraging that the model constant can be adequately predicted without reference 
to experimental data. Since the value of the constant that  we obtained at relatively 
low Reynolds number is very close to the one found from both high Reynolds number 
theories and our earlier modelled simulations a t  higher Reynolds numbers, it appears 
that the constant is independent of Reynolds number, a t  least above the one we have 
used. Again, the proper Reynolds number is the one based on subgrid-scale parameters 
and is approximately equal to Re,. We are currently investigating lower Reynolds 
numbers, and i t  appears that the viscous effects that  are expected theoretically in- 
deed appear and that modification of the model will be necessary. It thus appears 
safe to conclude that, so long as the subgrid-scale turbulence is nearly isotropic and 
its Reynolds number is high enough, the models of eddy-viscosity type are sufficiently 
accurate for most purposes. 

The inaccuracy of the model seems to arise more from the fact that  the subgrid- 
scale Reynolds stress tensor and the large-scale strain-rate tensor have principal axes 
that are not aligned than from the inaccurate representation of the eddy viscosity. 
This means that, except in transitional flows as noted in the previous paragraph, the 
use of one- and two-equation subgrid-scale models is not likely to  provide a significant 
improvement over the simple Smagorinsky model used here. There may be implications 
in this for Reynolds-stress modelling, but any conclusions of this nature would be very 
speculative a t  present. 

One case in which modification to the model is certain to be required is that of 
developing and transitional flows. I n  these cases, the large-scale turbulence must be 
allowed to develop before any subgrid-scale turbulence can appear, and the relation- 
ship between the subgrid turbulence and the resolvable field is quite different from 
that assumed in deriving the models. Use of the subgrid-scale models at too early a 
time in such flows may simply prevent transition from occurring, and we shall surely 

done. 

__ 

__ _- 
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need a model that allows the subgrid-scale effects to lag behind the resolvable field 
turbulence. 

Many extensions of this work are possible, and some are currently being carried out 
and will be reported at  a later time. Among the lines of investigation will be the search 
for more accurate representation of the subgrid-scale Reynolds-stress tensor by means 
of other tensors. Higher-level models, lower Reynolds numbers, and the effects of 
anisotropy and large-scale strain are among the topics currently being considered. 

This paper is based in part on a dissertation submitted by one of the authors (R. A. 
Clark) in partial fulfilment of the requirements for the PhD. a t  Stanford University. 
The work was done under a grant from NASA-Ames Research Center (NgR-020-05- 
622). The authors gratefully acknowledge conversations with Dr A. Leonard, Dr D. 
Kwak, Dr S. Shaanan, Dr U. Mehta, Dr N. Mansour and Dr P. Moin. 
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